

3D-PIV とモーダルウェーブレット画像処理による 旋回流搬送装置内の流れの可視化*

田中 健嗣¹⁾, 武居 昌宏²⁾, 都 徳熙³⁾, 植村 知正⁴⁾, 斎藤 兆古⁵⁾

Visualization of Swirling Flow Transportation Equipment by 3D-PIV and Modal Wavelet Image Processing

Kenji TANAKA, Masahiro TAKEI, Deog-Hee DOH Tomomasa UEMURA and Yoshifuru SAITO

ABSTRACT

In order to evaluate three types of conveyance equipment using swirling flow, the flow fields in a vertical pipe were visualized by 3D-PIV and the three-dimensional velocity distributions were analyzed with modal wavelet transforms. The three types of equipment all have a main vertical pipe. Type A has one air inlet and an opening vertical pipe, Type B has four air inlets and an opening vertical pipe and Type C has four air inlets and a closing vertical pipe attached four air outlets. The 3D-PIV revealed that Type A and Type B exhibited an approximate axial flow along with a weak swirling flow. On the other hand, Type C had a strong swirling flow. As a result of modal wavelet transform analysis, it was found that the high frequency multiresolution element was the smallest in the Type C swirling component. This indicates that Type C has the steadiest swirling flow for suitable swirling conveyance equipment.

Keywords: Swirling flow, 3D-PIV, Modal wavelet transform

1.緒言

従来からサイクロン分離機¹⁾ や,空気輸送²⁾などの分野 において,旋回流が用いられており,多くの基礎的な研究 が行われている³⁾.これらの搬送装置内の流れを把握する ために,その速度分布を計測することは非常に重要である. 例えば妹尾らはピトー管を用いて圧力を計測することで, 管内旋回流の速度を計測し⁴⁾,松崎らは熱線流速計を用い てサイクロン分離機の速度分布計測を行なった⁵⁾. Bedi らはレーザー流速計により旋回流の速度分布と乱流速度 の計測を行ない⁶⁾, Khezzar はレーザー流速計により旋回 流の3成分の速度分布と乱流速度の計測を行った⁷⁾.

しかしながら、これらの計測方法は接触または非接触型の点計測であり、近年主流となっている非接触型の面計測ではない.その面計測の一例として PIV 計測が一般的であり、最近ではステレオ計測、すなわち 3D-PIV 計測も行われている⁸⁾しかしながら、現在まで管内旋回流を PIV 計測した例はほとんどなく、ましてや 3D-PIV 計測を行った例

もほとんど存在しない.

一般的に PIV で得られた速度分布には、大小さまざま なスケールの渦が混在し、最近、その特徴抽出法として連 続ウェーブレット解析を PIV 画像に適用する試みがなさ れ、バックステップ流れ⁹⁾やキャビティ流れ¹⁰⁾などの解析 が行なわれた. さらに李らは離散ウェーブレット変換を LobJet PIV 画像に適用した¹¹⁾. しかしながら、離散ウェー ブレット変換は画像データ数が2のべき乗でなければ適 用できないため、解析領域に制限が生じてしまう. そこで、 斎藤らは、画像データが2のべき乗に制限されないモーダ ルウェーブレット変換を提案し¹²⁾、筆者らは PIV 画像に 応用することを提案している¹³⁾.

安定した旋回流搬送を設計する上で,旋回流中にある大小さまざまな渦の状態を把握するため,物体が旋回する管路水平断面において旋回成分の空間周波数解析は重要となってくる.

そこで本研究では、旋回流搬送装置設計の第一段階として、3種類の旋回流発生装置を試作し、それぞれの流れを 3D-PIV で可視化した後、モーダルウェーブレット変換に よる多重解像度解析を行い、どの装置が最も適しているか を検討することを目的とする.

^{*} 原稿受付 2006 年 1 月 18 日

¹⁾ 正会員 オカモト株式会社

^{(〒301-0801} 茨城県龍ヶ崎市板橋町字西山1番地 E- mail: cpt.tanaka@imx.okamoto-inc.co.jp)

²⁾ 正会員 日本大学 理工学部

³⁾ 非会員 韓国海洋大学

⁴⁾ 正会員 関西大学 工学部

⁵⁾ 正会員 法政大学 工学部

2.10 パラメータ法

ステレオ PIV 法¹⁴⁾は多くの種類が存在するが、本研究 では Doh らの提唱した「10 パラメータ法」を用いる¹⁵⁾. Fig. 1(a) に物体座標系(X, Y, Z)とカメラ座標系(x, y, z)の 概略を示す.物体座標系で定義した粒子の位置を P(Xm, Ym, Zm)とし,カメラ座標系で定義した粒子の位置を P'(xc, ya)とする. 粒子の 3 次元位置を得るためには、まず「10 パラメータ法」に基づいて 6 つの外部パラメータ(α , β , γ , $dis, M_x, および M_y$ と、4つの内部パラメータ($c_x, c_y, k_1, お$) よび k₂)を求める. (α, β, γ)は Fig. 1(b) で示した通り,物 体座標系(X, Y, Z)に対するカメラ座標系 (x, y)の回転を 表す. dis は物体座標系の原点 O(0, 0, 0)とカメラ視点 F (X_o, Y_o, Z_o) 間の光軸距離を示し, M_x および M_y は, カメラ 視点 F から X Y 平面に垂線をおろした時の交点の X, Y 成 分である. cxおよび cyは, 焦点距離(カメラ視点 F とカ メラ主点Vからの距離)cの xy面における各成分である. k1および k2はレンズひずみ係数である.物体座標系にお ける粒子位置 P(Xm, Ym, Zm)をカメラ座標系 P'(xc, yc)で表 すと

$$x_{c} - \Delta x = c_{x} \frac{X_{m} - M_{x}}{\sqrt{dis^{2} - M_{x}^{2} - M_{y}^{2}} - Z_{m}}}{y_{c} - \Delta y = c_{y} \frac{Y_{m} - M_{y}}{\sqrt{dis^{2} - M_{x}^{2} - M_{y}^{2}} - Z_{m}}}\right\}$$
(1)

となる.ここで Δx と Δy は,

$$\Delta x = \frac{x_c}{r} \times (k_1 r^2 + k_2 r^4)$$

$$\Delta y = \frac{y_c}{r} \times (k_1 r^2 + k_2 r^4)$$

$$r = \sqrt{x_c^2 + y_c^2}$$
(2)

で表せる.式(1)の左辺を右辺に移項し、FとGで表すと、

$$F = c_{x} \frac{X_{m} - M_{x}}{\sqrt{dis^{2} - M_{x}^{2} - M_{y}^{2}} - Z_{m}} - (x_{c} - \Delta x)$$

$$G = c_{y} \frac{Y_{m} - M_{y}}{\sqrt{dis^{2} - M_{x}^{2} - M_{y}^{2}} - Z_{m}} - (y_{c} - \Delta y)$$
(3)

となる. ここで較正板を用いて 20 組の P (*X_m*, *Y_m*, *Z_m*)を あらかじめ光学距離計で高精度に測定する. さらにカメラ 座標系での(*x_c*, *y_d*)を求め,式(3)から最小二乗法を用いて, 各パラメータを求める. ここで式(3)より *X_m*と *Y_m*を求め ると,

$$X_{m} = \frac{x_{c} - \Delta x}{c_{x}} t + M_{x}$$

$$Y_{m} = \frac{y_{c} - \Delta y}{c_{y}} t + M_{y}$$

$$Z_{m} = d - t \qquad d = \sqrt{dis^{2} - M_{x}^{2} - M} \qquad (4) \qquad \succeq$$

$$t = \sqrt{dis^{2} - M_{x}^{2} - M_{y}^{2}} - Z_{m}$$

$$- 32 - dt$$

となる.

一方,回転変換行列を MMとおき,その逆行列 MM¹を B
 とおき,カメラ座標系から求めた物体座標の粒子位置 P
 (Xm, Ym, Zm)と物体座標系の三次元位置(X, Y, Z)の関係は

$$\begin{bmatrix} X_m \\ Y_m \\ Z_m \end{bmatrix} = M_M \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = B \begin{bmatrix} X_m \\ Y_m \\ Z_m \end{bmatrix}$$
(5)

となる. ここで *MM*は

$$M_{M}^{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$M_{M}^{2} = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$M_{M}^{3} = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$M_{M} = M_{M}^{-1} M_{M}^{-2} M_{M}^{-3}$$
(7)

$$M_{M}^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$$
(8)

になる回転変換を示す行列である.ここで B の各要素を $b_{11} \sim b_{33}$ で表すと

$$X = \left(b_{11} \frac{x_c - \Delta x}{c_x} + b_{12} \frac{y_c - \Delta y}{c_y} - b_{13}\right)t + \left(b_{11}M_x + b_{12}M_y + b_{13}d\right)$$

$$Y = \left(b_{21} \frac{x_c - \Delta x}{c_x} + b_{22} \frac{y_c - \Delta y}{c_y} - b_{23}\right)t + \left(b_{21}M_x + b_{22}M_y + b_{23}d\right)$$

$$Z = \left(b_{31} \frac{x_c - \Delta x}{c_x} + b_{32} \frac{y_c - \Delta y}{c_y} - b_{33}\right)t + \left(b_{31}M_x + b_{32}M_y + b_{33}d\right)$$
(9)

となる.

カメラ視点 F(X₀, Y₀, Z₀)は,

$$\left.\begin{array}{c}
X_{0} = b_{11}M_{x} + b_{12}M_{y} + b_{13}d \\
Y_{0} = b_{21}M_{x} + b_{22}M_{y} + b_{23}d \\
Z_{0} = b_{31}M_{x} + b_{32}M_{y} + b_{33}d
\end{array}\right\} (10)$$

となる.各カメラに対するカメラ視点 F(X₀, Y₀, Z₀)と粒子 を通る1つの直線方程式は媒介変数をtで表すと,

$$P(X,Y,Z) = P\begin{pmatrix} (b_{11}\frac{x_c - \Delta x}{c_x} + b_{12}\frac{y_c - \Delta y}{c_y} - b_{13})t + \\ (b_{11}M_x + b_{12}M_y + b_{13}d), \\ (b_{21}\frac{x_c - \Delta x}{c_x} + b_{22}\frac{y_c - \Delta y}{c_y} - b_{23})t + \\ (b_{21}M_x + b_{22}M_y + b_{23}d), \\ (b_{31}\frac{x_c - \Delta x}{c_x} + b_{32}\frac{y_c - \Delta y}{c_y} - b_{33})t + \\ (b_{31}M_x + b_{32}M_y + b_{33}d) \end{pmatrix}$$
(11)

となる. これは, 1 個の粒子に対する 1 台のカメラから の直線方程式なので2 台のカメラ A,B に対する 2 つの直 線方程式は,

$$A(X, Y, Z) = A(a_{11}t + X_0, a_{12}t + Y_0, a_{13}t + Z_0)$$

$$B(X, Y, Z) = B(a_{21}t' + X_0, a_{22}t' + Y_0, a_{23}t' + Z_0)$$
(12)

である¹⁶⁾.3次元座標位置はこの2つの直線の交点であり, *t*,*t*'は最小二乗法によって求める.すなわち,物体座標系 の粒子の3次元位置 P(*X*, *Y*, *D*は, 2台のカメラAおよび Bを用いて,

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{2} \left\{ \begin{bmatrix} X_A \\ Y_A \\ Z_A \end{bmatrix} + \begin{bmatrix} X_B \\ Y_B \\ Z_B \end{bmatrix} \right\}$$
(13)

と表せる. ここで, (X_A , Y_A , Z_A)は式(12)を用いて得られた カメラAにおける物体座標系の粒子位置であり, (X_B , Y_B , Z_B)も同様にカメラBにおける粒子位置である. カメラA,B において相関法により時間の対応付けを行った.

(a)The absolute coordinate and the photographical coordinate.

(b) The Photographical coordinate of camera A and B.

Fig. 1 Relations of camera parameters on the absolute coordinate and the photographical coordinate.

3. 実験

3.1実験装置·条件·方法

実験装置はFig.2に示した基本装置と, Fig.3に示した 旋回流発生装置から成る. Fig.2 に示した基本装置は, 鉛 直パイプ, コンプレッサー, コンプレッサー用コントロー ラー, 旋回流発生装置取付部, レーザーシート, 2 台の CCD カメラ,パルスジェネレータ,およびコンピュータから成 る. 鉛直パイプは,長さ 600mm,内径 100mm, 無色透明 のアクリル製であり、下端には空気の供給量を均一にする ため, 鉛直パイプよりもひとまわり大きな囲いを設けた. 旋回流発生装置取付部には、空気を供給するための流入口 が鉛直パイプの下端(Lower part)に位置し,空気を排出する ための流出口が鉛直パイプの上端(Top part)に位置する. Fig.4に示した通り旋回流発生装置は3種類存在し、それ ぞれ形状が異なる. Type A は Fig. 4(a) に示した通り, 上 端(Top part)が開放され、下端(Lower part)に接線方向から1 つの空気流入口(内径 8mm)が取り付けられている. Type B は Fig. 4(b) に示した通り, 上端(Top part)が開放され, 下端(Lower part)に接線方向から 4 つの空気流入口が取り 付けられている. Type C は Fig. 4(c) に示した通り, 上端 (Top part)が閉塞され、接線方向に4つの流出口が取り付け られ,下端(Lower part)に接線方向から4つの空気流入口が 取り付けられている. 測定位置はFig.3 に示した通り, 下 端(Lower part)の鉛直管下端より 240mm 上方の位置を中心 とし X×Y が 80 mm×50 mmの範囲で,管壁より X 方向に 10mm 内側になるよう設定し2台の CCD カメラにて測定を行な った. CCD カメラは Kodak 社製の Megaplus であり, 解像 度 1008 Pixel × 1018 Pixel を用い、1/60sec 間隔で連続的に 撮影した. 光源であるレーザーシートは光源 Nd:YAG,出 力 120mJ である. レーザーシートの照射と CCD カメラの 撮影を同時に行うため、パルスジェネレータに LabSmith 社製の LC880 を用いた. CCD からの画像データはコンピ ュータにて,解像度 $n_x = n_y = 30$ Pixel のベクトル画像として 得た. 鉛直パイプ下端よりコンプレッサーによって圧縮し た空気とトレーサー粒子である煙を混合し,流入口に供給 した. 流量は実際の旋回流搬送装置により発泡スチロール 製の長さ 60mm, 直径 12mm の棒状物体を搬送することを 考え、その棒状物体が L=240mm の位置で旋回した時の流 量とした. すなわち, 流量 Q は TypeA の場合 Q_A =3.83×10⁻³ m³/sec, TypeB の場合 Q_B =3.41×10⁻³ m³/sec, そして, TypeC の場合 Qc=2.43×10⁻³ m³/sec である. 流量を管断面積で除 した管内の平均流速Uは, Type A の場合 U₄=0.49 m/s, Type Bの場合 U_B=0.43 m/s であり, Type C の場合 U_C=0.38 m/s である. さらに平均流速から求めたレイノルズ数 Re は Type A の場合 Re₄=3250, Type B の場合 Re_B=2850, Type C の場合 Re_C=2500 である.

これら3種の旋回流発生装置により,鉛直パイプ内に旋回流を発生させ,十分時間が経ち,流れが安定した時点を 0 Δt sec とし,1 Δt sec から500 Δt sec における管内の流れを 撮影した1 Δt sec から500 Δt sec の各画像について,時間 tにおけるi(X, Y, Z)成分のX-Y平面における2次元速度分 布のベクトル画像を $U_{i=X,Y,t}^{X,Y,t}$ とし,そのXとYとtの関数の 空間平均値の時間変化 U_{i} は,

$$\overline{\overline{U_i^t}} = \frac{1}{n_x} \frac{1}{n_y} \sum_{X=1}^{n_x} \sum_{Y=1}^{n_y} U_i^{X,Y,t}$$
(14)

となる. その時間平均の空間分布 U_i^t は,

$$\overline{U}_{i}^{X,Y} = \frac{1}{t_{n}} \sum_{i=1}^{t_{n}} U_{i}^{X,Y,t}$$
(15)

となる. ただし, Z 成分は回転を示すため, U_Z^t は絶対値 をとった. ここで t_n は時間側の画像枚数を表し t_n =500 で あり, $n_x = n_y$ =30 である.

Fig. 2 Basic device of experimental setup.

Fig. 3 Size of detecting area and direction of coordinate.

Fig. 4 Swirling flow generator.

3.2 実験結果

1 Δt sec から 500 Δt sec における Type A, Type B, および Type Cの速度分布を3次元ベクトル画像で示し、その一例 として, 30∆t sec を Fig. 5 に示した. ベクトルの色につい ては、1枚の画像の中で一番小さいベクトルを青色、一番 大きいベクトルを赤色とし、その間のベクトルを相対的に 色分けした.そして,各速度分布画像について,X,Y およ びZ成分の空間平均の時間変化を,式(14)から求め,Fig.6 に示した. Fig. 6 より Type A および Type B は, Y 成分が 一番大きく,次にX成分でZ成分が一番小さかった.一方 Type C は Z 成分が一番大きく, X 成分と Y 成分は小さくほ ぼ同じ程度であった¹⁷⁾.一方時間平均の空間分布を,式 (15)から求め, Fig.7 に示した. Fig.7 より Type C は旋回 流が顕著に可視化できたが、Type A および Type B は Type C に比べると、その旋回速度成分は小さかった. そこで、 Type A および Type B の旋回流を確認するため、 Z 成分に ついて正の流れを白色, 負の流れを黒色で二値化した図を **Fig.8**に示した. その結果, Type A および Type B も管の 中心を境に反時計周りに旋回しているのが確認できた.

以上より、3D-PIV により旋回流発生装置の構造の違い によって、旋回流のX,YおよびZ成分の比率が異なるこ とが分かった. これは, Type A および Type B は鉛直パイ プの上端(Top part)が開放されているため,下端(Lower part) で発生した旋回流が、上昇するにつれて Y 成分に移行し、 L=240mm では、Z 成分がわずかに存在していたと考えら れる. 一方, Type C は上端(Top part)が閉塞され, 4 つの流 出口が取り付けられたことによって,下端(Lower part)で発 生した旋回流が, 鉛直パイプの広い範囲で保たれ, L=240mm でも、Z成分が顕著に確認できたと考えられる.

Fig. 5

Fig. 8 Swirling direction of spatially mean velocity.

4.多重解像度解析による旋回流発生装置の比較検討

4.1 モーダル・ウェーブレット変換

モーダルウェーブレット変換は画像の支配方程式にポ アソン方程式を仮定し、そのモーダル行列を基底関数とし たものである¹²⁾.時間*t*における*XY*平面における2次元 速度分布を*u*^{*X*,*Y*,*t*}とすると、そのポアソン方程式は、

$$\nabla^2 u_i^{X,Y,t} = -\sigma \tag{16}$$

となる. ここで*i*は*X*,*Y*および*Z*成分を表し, $n_x \times n_y$ ピクセルを持つ画像 $u_i^{X,Y,t}$ は,*X*,*Y*および*Z*方向の速度成分を持つ $n_x \times n_y$ の2次元の行列である.式(16)を離散化し行列表示すると

$$L\boldsymbol{U}_{i}^{X,Y,t} = \boldsymbol{F} \tag{17}$$

となる. Fは画像のソースデンスティ σ である. Lはノイマン型の境界条件を与えることで得られるラプラシアンに対応する係数行列であり対称行列かつ正定値となり, n 個の固定値とそれに対応する固有ベクトル v_i (*i*=1,2,...,*n*) が存在する. そのモーダル行列 W は,

$$W = \left(\boldsymbol{v}_1 \quad \boldsymbol{v}_2 \quad \dots \quad \boldsymbol{v}_q \right) \tag{18}$$

となり、ユニタリ行列で直交行列であるので、

$$W^T W = I \tag{19}$$

となる.このモーダル行列 Wを,アナライジングウェーブ レット行列とした変換は,モーダルウェーブレット変換と 呼ばれており $^{12),13)}$,ウェーブレットスペクトラムは,

$$S_i^{X,Y,t} = W U_i^{XYt} W^T \tag{20}$$

となる. モーダルウェーブレット逆変換とその多重解像度は,

$$U_i^{X,Y,t} = W^T S_i^{X,Y,t} W = W^T S_i^{X,Y,t,l} W + \cdots$$

+ $W^T S_i^{X,Y,t,n} W = \sum_{Level=l}^n U_i^{X,Y,Level}$ (21)

と表すことができる. ここで $U_i^{X,Y_{t,l}} = W^T S_i^{X,Y_{t,l}} W$ は周波 数が最も低いレベル1を示し, $U_i^{X,Y_{t,n}} = W^T S_i^{X,Y_{t,n}} W$ は周 波数要素が最も高いレベル n を示す. 空間周波数に分解 した時間平均の速度分布を,

$$\overline{U}_{i}^{Low} = \sum_{Level=1}^{5} \left(\frac{1}{t_{n}} \sum_{t=1}^{t_{n}} U_{i}^{X,Y,t,Level} \right)$$

$$\overline{U}_{i}^{Middle} = \sum_{Level=6}^{18} \left(\frac{1}{t_{n}} \sum_{t=1}^{t_{n}} U_{i}^{X,Y,t,Level} \right)$$
(22)

$$\overline{U}_i^{High} = \sum_{Level=19}^{30} \left(\frac{1}{t_n} \sum_{t=1}^{t_n} U_i^{X,Y,t,Level} \right)$$

により定義した.ここで、一は時間平均を示す. \overline{U}_{i}^{Low} は低空間周波数に分解した時間平均の速度分布であり、 $\overline{U}_{i}^{Middle}$ は中空間周波数に分解した時間平均の速度分布であり、 \overline{U}_{i}^{High} は高空間周波数に分解した時間平均の速度分布である.本研究では、Level 1 から Level 5 までの和を低空間周

波数と呼び, Level 6 から Level 18 までの和を中空間周波数 と呼び Level 19 から Level 30 までの和を高空間周波数と呼 ぶ. すなわち, \overline{U}_i^{Low} は空間的に平均的な速度分布を示し, \overline{U}_i^{High} は空間的に局所的な速度分布を示し, \overline{U}_i^{Middle} はそ れらの中間的な速度分布を示す.

次に式(21)よりその時間空間平均の速度分布を,

$$\overline{\overline{U_i^{Level}}} = \frac{1}{t_n} \frac{1}{n_y} \frac{1}{n_x} \sum_{t=1}^{t_n} \sum_{Y=1}^{n_y} \sum_{X=1}^{n_x} U_i^{X,Y,t,Level}$$
(23)

により定義した.ここで, ≡ は時間空間平均値を表す.

4.2 旋回流発生装置の比較検討結果

Fig.5に示した*X*, *Y*, *Z*の3成分からなる*X*-*Y*面の2次元 速度分布画像に対して,モーダルウェーブレットによる多 重解像度分解を行った.そして,そのLevel1からLevel30 までの時間平均の空間速度分布を式(21)から求める.次に 式(23)より低,中,高空間周波数に分解した時間平均の速 度分布をFig.9に示す.ベクトルの色については,1枚の 画像の中で一番小さいベクトルを青色,一番大きいベクト ルを赤色とし,その間のベクトルを相対的に色分けした. このFig.9よりTypeA,TypeBに比べ,TypcCでは中,高 空間周波数の速度分布が異なっていることがわかる.さら にLevel1からLevel30までの各速度分布画像について, *X*, *Y*および *Z*成分の時間空間平均値を式(22)から求め,

Fig. 10 に示した. Fig. 10 より, Type A, Type B では, Y 成分, X 成分, Z 成分の順に速度が大きいのに対し, Type C では,Z 成分がX 成分,Y 成分に対して大きい. そして, 各旋回流発生装置の比較をするために,Type A, Type B お よび Type C の旋回成分であるZ 成分のみを取り出し,最 大値を 1.0 に最小値を 0.0 に正規化し対数目盛として Fig. 11 に示した.その結果, Type A, Type B および Type C のZ 成分の値は,Level 1 から Level 18 までの低,中空間 周波数ではほぼ同じであるが,Level 19 以上の高空間周波 数では,Type C の値は急激に減少した.次に,Z 成分の低 空間周波数,中空間周波数および高空間周波数の比率を Table 1 に示す.この表に示した通り,Type A と Type B で は,高空間周波数の比率(約 20%)が中,低空間周波数の比率 率(各約 40%)に対して比較的大きい.一方,Type C では, 高空間周波数の比率(4%)が中

空間周波数(20%), 低空間周波数の比率(76%)に対して非常 に小さい. 従って, Type C の旋回流発生装置を用いて物体 を搬送した場合, 空間的にほぼ一様の旋回方向の抗力が得 られ物体は安定して搬送されると考えられる.

Fig. 9 Velocity distribution decompose to temporal mean frequency.

Fig. 10 Spatial mean velocity from multiresolution analysis.

Table 1Frequency ratio of swirling component.

		Type A	Type B	Type C
Low spatial frequency	Level 1~5	39%	46%	76%
Middle spatial frequency	Level 6~18	43%	38%	20%
High spatial frequency	Level 19~30	19%	16%	4%

5. 結論

旋回流搬送装置設計の第一段階として,次の3種類の旋回流発生装置を製作した.Type A として空気流入口×1で鉛直パイプ上端を開放したもの,Type B として空気流入口×4 で鉛直パイプ上端を開放したもの,Type C として空気流入口×4 を上下に設け,鉛直パイプ上端を閉塞したものを試作した.そして,各装置を比較検討するために,鉛直パイプ

内の速度分布を 3D-PIV で可視化計測し,得られた速度分 布の2次元ベクトル画像に対して,モーダルウェーブレッ トによる多重解像度解析を行った.その結果,旋回成分で あるZ成分において,Type A および Type B には,高空間 周波数が比較的多く含まれているのに対し,Type C は,高 空間周波数が少ない流れであることが分かった.従って, Type C の旋回流発生装置を用いて物体を搬送した場合,空 間的にほぼ一様の旋回方向の抗力が得られ物体は最も安 定して搬送されると考えられる.

謝 辞

本研究を行うにあたり、オカモト株式会社の三浦博氏お よび白百合女子大学の堀井清之先生に多大なご協力ご助 言をいただきました.ここに厚く御礼申し上げます.

参考文献

- 1) 小川明: "サイクロン分離機", アース社, (1980).
- 李輝,富田侑嗣: "鉛直管内固気二相旋回流の数値シ ミュレーション",日本機械学会論文集(B編), Vol.62, No.603, (1996),pp.3810-3817.
- 上田寛,武居昌宏,趙耀華,李輝,越智光昭,富田侑嗣, 堀井清之: "スパイラルフローを用いた管内壁への低 接触化空気輸送",日本航空宇宙学会誌, Vol.46, No.534,(1998), pp.393-397.
- 4) 妹尾泰利,永田徹三: "長い平滑管および粗面管の旋回 流",日本機械学会, Vol.38, No.308, (1972), pp.759-766.
- 5) 松崎和愛,本田逸郎,後藤茂宏,大庭英樹,宗像瑞恵: "サ イクロン分離器内旋回流に関する研究(第1報,平均 流れ特性),日本機械学会論文集(B),Vol.64,No.618, (1998),pp.375-379.
- P.S.Bedi, M.T.Thew : "Localized velocity and turbulence measurement in turbulent swirling flows using laser Doppler anemometry", *Optical and Quantum Electronics*, Vol. 5, No.1,(1973),pp.9-25.
- L.Khezzar: "Velocity measurements in the near field of a radical swirler", *Experimental Thermal and Fluid Science*, Vol.16, (1998),pp.230-236.
- 8) 可視化情報学会編, "PIV ハンドブック", 森北出版, (2002).
- 9) R.Camussi: "Coherent structure identification from wavelet analysis of particle image velocimetry data", *Experiments in Fluids*, Vol.32, No.1 (2002), pp.76-86.
- 10) C. Schram, P. Rambaud, M.L. Riethmuller.: "Wavelet based eddy structure education from a backward facing step flow investigated using particle image velocimetry", *Experiments in Fluids*, Vol.36, No.2 (2004), pp.233-245.
- E.Özsoy, E. P.Rambaud, A.Stitou, M.L.Riethmuller.: "Vortex characteristics in laminar cavity flow at very low mach number", *Experiments in Fluids*, Vol. 38,No.2

(2005), pp.133-145.

- 12) 斎藤兆古: 知的可視化情報処理(3),日本 AEM 学会 誌,Vol.10,(2002), pp.170-177.
- 13) 田中健嗣,吉田美智子,武居昌宏,植村知正,斎藤兆 古: "モーダルウェーブレット変換を用いた PIV 画像 解析における最適基底関数の選択",可視化情報学会 論文集,Vol.26, No.8,(2006), pp.81-88.
- 14) Prasad A. K. and Adrian R. J.: "Stereoscopic particle image velocimetry applied to liquid flows", *Experiments* in *Fluids*, Vol. 15, (1993), pp.49-60.
- 15) Doh D.H., Him D.H., Cho K.R., Cho Y.B., Saga T and Kobayashi T: "Development of GA based 3D-PTV technique", *Journal. of Visualization*, Vol.5, (2002), pp.243-254.
- 16) Doh D.H., T.G., Saga T.: "3D-PTV measurements of the wake of a sphere", *Measurement Science and Technology*, Vol.15, (2004), pp.1059-1066.
- 17) 小川明, 渦学, 山海道.