磁気センサー信号の知的可視化信号処理

河村 憲作, 早野 誠治, 齋藤 兆古 (法政大学大学院)

堀井 清之(白百合女子大学)

Smart Visualized Magnetic Sensor Signal Processing

Kensaku KAWAMURA, Seiji HAYANO, Yoshifuru SAITO and Kiyoshi HORII

ABSTRACT

After Newton mechanics had been established, major effort of human innovation had been devoted to enforce the human physical power, such as hand, foot and fighting power by many physical tools and mechanical devices. After spreading use of digital computers, most of the human innovative efforts are now devoting to work out the artificial human brain or compensative tool of human brain works.

In the present paper, one of the methodologies to carry out the line signal diagnosis is proposed based on the some assumptions in natural phenomena.

Keywords: Magnetic Sensor, Visualized Signal Processing, Smart Processing

1.緒 論

筆者らは,ライン信号を可視化するため,3次元リサ ージュ図法を提案した1). ライン信号から3次元リサー ジュ図を生成するために等価固有値法とポアンカレ法を 提案した1).本報告は前者の等価固有値法に関するもの である.この方法は,数値シミュレーションで離散化誤 差が無視できる場合,系の正確な固有値へ厳密に対応す る等価固有値を与える.しかし,実際の磁気センサーで はノイズのため、第1近似固有値の平均値程度に止まる. 本稿は定常状態に於ける系の入出力特性から3次元リサ ージュ図を生成する一方法を提案する. すなわち, セン シング対象を含む系全体の定常状態伝達関数を定常状態 の等価固有値として可視化し識別する方法を提案する. その結果,定常状態の等価固有値は比較的直交性が高い 事が判明したので此処に報告する.

2.等価固有值(Equivalent Characteristic Value)

ECV は系が与える時間領域の応答信号を初期値問題 の解と仮定して解析することで系の性質, すなわち, 系 の固有値情報を求める方法である1)2).

3. ライン信号識別

3.1 3次元リサージュ図

ライン信号の可視化画像は信号のリサージュ図形であ り,これを固有パターンと呼ぶ.従来の単純なリサージュ 図では軌跡の重複情報が削除される.このため、軌跡の 重複度をヒストグラム的に加算し重複情報を高さ情報と して維持する3次元リサージュ図を考える. Fig.1 は位 相差や周波数の相違を表す3次元リサージュを示す.

(d) Same frequency

(e) 1:2 Frequency Ratio

(f) 1:3 Frequency Ratio Fig.1 Various 3 Dimensional Lissajous

Fig.1 から,3次元リサージュ図は振幅,位相,周波 数,そして時間情報などを巧みに表現する可視化方法で あることが分かる4)5).

3.2 認識手法

最小自乗法を不適切な線形方程式へ適用しセンサー信 号の識別を行う¹⁾.

3.3 空き缶識別

励磁・差動コイルで構成される磁気センサー装置を試 作した.空き缶を差動コイルに挿入時の入出力信号から 3次元リサージュを作成し,空き缶の識別を行なう.ア ルミ缶4個とスチール缶5個の9個の空き缶を供試した. **3.4** 空き缶の識別結果

3次元リサージュ法は,振幅,位相,周波数,そして 時間情報などを的確に可視化する方法であり, すべての 缶が磁気センサー信号から識別できた1).

3.5 金属球の位置認識

Fig.2 は,試作した金属球の位置認識磁気センサーを 示す.中心部に位置するコイルが励磁コイルであり,直 径 2.5[cm]で 0.6[mm]のホルマル線 100 回巻きの有限長

可視化情報学会全国講演会(新潟 2005)

ソレノイドコイル、両端の差動コイルは同一仕様であり, 直径3.5 [cm]で0.6 [mm]のホルマル線60回巻きの 有限長ソレノイドコイルである.Fig.2 で,励磁コイル に周波数5[KHz]の正弦波電圧を印加し,被測定対象(タ ーゲット金属)の影響による磁界の差異を左右の差動コ イルに誘起する差動電圧が与える.センサーの入出力信 号を用いてターゲットの位置認識に関する検討を行う.

Fig.2 Tested Differential Coil Type Magnetic Sensor

3.6 サンプル金属球

Fig.3 に位置認識に用いる金属球を示す.サンプルは スチール球,銅球,アルミ球で、それぞれ、直径20[mm] の球である.各球をセンサーの端から端まで1[cm]毎に 移動しセンサーの入出力信号を30点で測定する.セン サーの中心は,端から15[cm]に位置する.

Sample 1 (Steel) Sample 2 (Cu) Sample 3 (Al) Fig.3 Tested Sample balls

3.7 金属球の位置認識結果

Fig.4 は,スチール球移動時の励磁コイルの入力信号 と差動コイルの出力信号を用いた3次元リサージュ図で ある.

Fig.4 の3次元リサージュ図を用いて 3.2 節で述べた 最小二乗法で金属球の位置認識を行なう.5 回の測定結 果を畳み込みした解ベクトル X の要素を Fig.5 に示す. 各解ベクトル中の最大値をとる要素番号がデータベース 中の認識された画像である. スチール球で9割,銅・アルミ球で8割弱の認識率で あった.しかし,誤認識は,出力がゼロ近傍で多く,再 現性が高い有効な出力が得られる場合は,ほぼ100%の 認識率であった.拠って、3次元リサージュ法は,金属 球の位置認識問題に対して有効な手段であることが判明 した.また,スチール球と銅・アルミ球との認識率の差 は 磁性体と非磁体による出力の違いに拠る.すなわち, 銅・アルミ球がターゲットである場合、センサー端部で 出力が低下する.

4.まとめ

本稿は,等価固有値法が過渡状態を前提とするのに対し,定常状態に於ける系の入出力特性から3次元リサージュ図を生成する方法.すなわち,センシング対象を含む系全体の定常状態伝達関数を可視化し,ライン信号からセンシング対象を識別する方法を提案した.

その結果,3次元リサージュ法を用いることで,空き 缶の識別においては,全ての空き缶の識別が可能であり, また金属球の位置認識においては,有効出力が得られる 場合,良好な精度で位置認識が可能であることを述べた.

有効な入出力信号が得られる場合,センシング対象間 で比較的直交性の高い可視化情報が得られる点が特筆さ れる.

参考文献

- 河村憲作,早野誠治,斎藤兆古:「等価固有値法によるライン信号処理」,可視化情報学会誌,pp-63-66 (2005 Vol.25)
- 2) 茂田幸康,早野誠治,斎藤兆古:「磁気センサー信号処理-概念と一例-」,電気学会マグネティックス研究会資料, MAG-00-116 (2000).
- 3) 茂田幸康,早野誠治,斎藤兆古:「等価固有値法による磁 気センサー信号処理」,2002 年度法政大学大学院工学研究 科電気工学専攻修士論文(2003).
- 4) 木村祐二,早野誠治,斎藤兆古:「ライン信号の可視化と信 号認識」,可視化情報学会誌,pp-235-238 (2004)
- 5) 妹尾 勇,「信号認識と磁気センサー」,2001 年度法政大学 大学院工学研究科電気工学専攻修士論文 (2001).