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Abstract:Abstract:Abstract:Abstract: This paper proposes the modal-wavelet transform (MWT) as one of the 
orthogonal wavelet transforms. The theoretical background and application of our 
MWT are described. The bases of MWT are derived from modal analysis of the 
potential field equations. Namely, principal idea of MWT is that a numerical data set 
is regarded as a set of field potentials or source densities. A modal matrix, 
constituting characteristic vectors, derived from the discretized field equations 
enables us to carry out an orthogonal transform in much the same way to those of the 
conventional discrete wavelets. The modal-wavelets based on the data modeling 
provide a multi-resolution analysis in most efficient manner. Applying 3-dimensional 
analysis of the MWT to a weather satellite infrared animation classifies it into 
background and cloud moving frame images. 
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1. Introduction 
The spread of high performance and reasonable price computers has yielded a large scale Internet 
community as well as information resources. Data handling technologies based on the digital 
computers are of main importance to realize more efficient networking and computing. Discrete 
wavelet transform (DWT) may be promised to become a deterministic methodology   handling the 
digital signals and images, e.g., compressing data quantity, extracting their characteristics, etc 
(e.g., Matsuyama, 1999). Moreover, their applications to electromagnetic field calculation, solving 
forward and inverse problems, have been investigated and spurred to faster calculation algorithm 
(Beylkin et al., 1991, Doi et al., 1996). The conventional DWT, however, sometimes suffers from 
limitation on subject data length, which must be power of 2. Thereby, the applications depend on 
employed wavelet basis, and it needs an enormous memory installation for implementation. The 
principal purpose of this paper is to derive new wavelet basis to carry out more efficient wavelet 
analysis. 

This paper proposes the MWT as one of the DWTs. The bases of MWT are derived from a modal 
analysis of the discretized field equations. Regarding a numerical data set as the potential or 
source density distribution leads to a discretized data model, i.e., the data set can be represented 
by the field equation, e.g., Poisson’s equation. Then, the modal analysis of the discretized field 
equation gives a modal matrix constituting characteristic vectors. The modal matrix enables us 
orthogonal transform in the same nature as DWT. MWT utilizes this matrix as one of the wavelet 
bases. Because of the field equation based modeling, MWT makes is possible to generate an 
optimal basis to the subject data length. 
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2. Modal-Wavelet Transform 
2.1 Data Representation by Field Theory 
To derive a new wavelet bases, we consider a discrete data modeling based on the classical field 
theory. Namely, a numerical data set is assumed to be the potential or source fields. According to 
the field theory a scalar field u caused by source density σ could be obtained solving the differential 
equation, i.e., Poisson equation: 

σε −=∇ u2         (1) 
where ε is the medium parameter of the field. Also, the scalar field u can be obtained by 
fundamental solution 

drrgu �= σ
ε

)(1
       (2) 

where g(r) is a Green function; r is the distance from the source to reference points. 
Discretization of (1) and (2) by numerical methods respectively derive the following system of 

equations: 
fU =L          (3) 

and 

Uf =G          (4) 
where ffff, UUUU denote the vectors corresponding to the source density σ and the scalar field u; and L,G 
denote the coefficient matrices derived from the Laplacian operator in (1) and Green function in (2), 
respectively.  

As an example, let each of pixel values in Fig.1(a) be a scalar potential assuming the medium 
parameter ε to be a constant on the entire field, then applying L or G -1 to Fig.1(a) yields the source 
density distribution like Fig.1(b). Solving (3) or (4) with the source density as vector ffff reproduces 
the image as in Fig.2. Especially, Figs. 1(a) and 2(a) are identical in values. Therefore, our discrete 
data modeling based on field equation is capable of representing numerical data sets (Endo et al., 
2001). 
 

(a) Original Image (128x128 pixels) (b) An Example of Source density (128x128 pixels)
 

Fig. 1   Source Density Representation of a 2D Image 
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(a) Recovered Image by Poisson Equation (3) (b) Recovered Image by Integral Equation (4) 
 

Fig. 2   Image Recovery from Image Source Density (128x128 pixels) 
 

2.2 Modal-Wavelet Transform 
As is well known, the matrices L in (3) and G in (4) derived by available discretizing methods, e.g., 
finite elements etc., become the symmetrical as well as positive definite matrices. In case when the 
vector UUUU has q elements, it is possible to obtain the characteristic values λi, i=1,2,…,q, of the 
matrices L and G and their respective characteristic vectors vvvvi, i=1,2,…,q. The matrix composed of 
the characteristic vectors vvvvi, i=1,2,…,q as its columns is called the modal matrix: 

( )qqM vvv ...21=        (5) 

Because of the orthogonality, it holds following relationship: 

qq
T
q IMM =         (6) 

where the superscript T refers to a matrix transpose and Iq is a q by q unit matrix. The modal 
matrix derived from the coefficient matrix L or G has the same nature as those of the conventional 
DWT matrices. Moreover, a linear combination of the characteristic vectors is possible to represent 
the value distribution in a data set. Thus, MWT employs this modal matrix as DWT matrices. 

2.3 Modal-Wavelet Transform Matrix and Basis 
The MWT matrices can be derived various methods of discretizations. The MWT matrices 
introduced in the present paper are classified into two types. One is differential equation type 
assumed the subject data to be a potential field. The other is integral expression type assumed the 
subject data to be the field source distribution.  

At first, let us consider MWT derived from differential equation. The simplest system matrix L 
can be obtained by one-dimensional Laplacian operation with equi-meshed 3 points finite 
difference approximation. Namely, the matrix L in (3) is given by 

112

2
2 2 +− +−≅

∂
∂=∇ xxx UUU
x
uu ,  qx ,...,2,1=     (7) 

Then, applying the Jacobi method yields a modal matrix Mq in (5). Therefore, the dimension of 
matrix Mq depends on number of subdivision of (7). This means it is possible to generate an optimal 
basis to the subject data. In the Laplace partial differential equation, two types of boundary 
conditions should be considered, i.e., the Dirichlet- and Neumann- type boundary conditions. 
Figs.3(a) and (b) illustrate the typical differential equation based MWT matrices. As shown in 
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Figs.4 and 5, the bases having the Dirichlet- and Neumann- type boundary conditions become odd- 
and even- functions, respectively. The bases of MWT look like sinusoidal functions, however, the 
bases are not composed of the single frequency component. Moreover, the elements constituting the 
transform matrices never become the complex numbers like the Fourier transform. 

Second, let us consider MWT derived from integral expression. We consider a 3-dimensional 
Green function g(r) in (2). However, the 3-dimensional Green function takes infinity when g(0) due 
to integral kernel. In order to remove this difficulty the matrix G in (4) is given by assuming the 
minimum distance ri,i = 1, thus, 

�
�

�

�
�

�

�

≅
1

1

)(
, jir

rg   if   

ji

ji

=

≠
, qjqi ,...,2,1,,...,2,1 ==    (8) 

where the subscripts i and j refer the source and reference points, respectively. Thereby, ri,j 
represents the distance between them. Since the system matrix derived from (8) becomes 
symmetrical, then the Jacobi method can be applied to obtain its modal matrix in much the same 
way as the MWT based on differential equation. Figs. 3(c) and 6 show the MWT matrix and its 
bases. They have the similar patterns to that of the MWT matrix derived under the Dirichlet 
boundary condition. 
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(a) Dirichlet Type Boundary Condition (b) Neumann Type Boundary Condition 
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Fig. 3   Modal-Wavelet matrices (64 x 64) 
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(a) The First Row Vector (b) The Second Row Vector 
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(c) The Third Row Vector (d) The Fourth Row Vector 
 

Fig. 4   Elements of Row Vectors in the matrix shown in Fig.3(a) and  
Their Fourier amplitude spectrum 
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(a) The First Row Vector (b) The Second Row Vector 
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(c) The Third Row Vector (d) The Fourth Row Vector 
 

Fig. 5   Elements of Row Vectors in the matrix shown in Fig.3(b) and  
Their Fourier amplitude spectrum 
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(a) The First Row Vector (b) The Second Row Vector 
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Fig. 6   Elements of Row Vectors in the matrix shown in Fig.3(c) and  
Their Fourier amplitude spectrum 
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3. Application to Animation Image Analysis 
3.1 Infrared Animation of Weather Satellite 
Fig.7 shows some frames of an infrared animation observed by the weather satellite Himawari 
(http://www.jwa.or.jp/). Applying MWT to this animation, separation of static and dynamic images 
is demonstrated. The animation used in this example is composed of 22 frames captured from 18:00 
Aug. 10th to 15:00 Aug. 11th in 2000. Fig.7 shows the generation process of typhoon No. 9 in 2000. 

 
(a) At 18:00, Aug. 10, 2000 (b) At 22:00, Aug. 10, 2000 (c) At 2:00, Aug. 11, 2000 

 

 
(d) At 6:00, Aug. 11, 2000 (e) At 10:00, Aug. 11, 2000 (f) At 14:00, Aug. 11, 2000 

 
Fig. 7   Frames of Infrared Animation by Weather Satellite Himawari (256x193 pixels) 

3.2 3-Dimensional Modal-Wavelet Transform 
In order to apply MWT to the animation in Fig.7, the 3-dimensional MWT is essential. Namely, 
applying MWT to horizontal-, vertical- and frame- axes of the animation carries out animation 
analysis. Let us consider the animation Slmn having m x n pixels and l frames. Then, its transpose 
rules are defined by 

mnl
T

lmn SS =][ , nlm
T

mnl SS =][ , lmn
T

nlm SS =][      (9) 

The 3-dimensional MWT gives the modal-wavelet spectrum Slmn’: 

[ ][ ][ ]TTT
lmnlmnlmn SMMMS =′

      (10) 

where Ml, Mm and Mn are the l by l-, m by m- and n by n- MWT matrices, respectively. And then, 
inverse MWT recovers the original animation Slmn: 

TTT

lmn
T
n

T
m

T
llmn SMMMS
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��
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��
� ′= .     (11) 

Since a linear combination of weighted spectrum represents the original animation Slmn, therefore, 
animation of each level can be generated by means of (11). 

3.3 Separation of Static and Dynamic Images 
As shown in Figs.3(b) and 5(a), the lowest level of bases derived under the Neumann boundary 
condition is a constant term. This means that the multi-resolution analysis to the frame axis is 
capable of extracting a common static image through entire frames of animation when employing 
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the Neumann type MWT matrix. In much the same way, the dynamic frame images of animation 
can be extracted. 

Figs.8 and 9 show the results of the multi-resolution analysis to the frame axis. Taking the 
lowest level of MWT multi-resolution analysis (11) into account yields the image in Fig.8. In this 
case, the generated result has some frames, but all of frames are the same as Fig.8. Thus, Fig.8 is 
the extracted background image representing static air pressure distribution. On the other hand, 
Fig.9 shows dynamic frame images of animation obtained by means of (11) without the lowest level 
of spectrum. 
 

 
 
Fig. 8   Extracted Static Image (256 x 193 pixels) 

 

 
(a) At 18:00, Aug. 10, 2000 (b) At 22:00, Aug. 10, 2000 (c) At 2:00, Aug. 11, 2000 

 

 
(d) At 6:00, Aug. 11, 2000 (e) At 10:00, Aug. 11, 2000 (f) At 14:00, Aug. 11, 2000 

 
Fig. 9   Frames of Extracted Dynamic Image (256 x 193 pixels) 

 

3.4 Comparison with Conventional Wavelets 
In the conventional DWT, the data length l, m and n must be a power of 2. In this animation 
analysis, the animation shown in Fig.7 has 256 x 193 pixels and 22 frames. If we carry out the 
same analysis with conventional DWT, then l, m and n described in Section 3.2 become 32, 256 and 
256, respectively. In case of MWT, l, m and n are 22, 256 and 193, respectively. MWT accomplishes 
an efficient analysis from the viewpoint of memory consumption. 
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4. Conclusion 
We have proposed the MWT and shown its application to animation analysis. Data representation 
by field equations has provided the optimal MWT bases to subject data. Application to animation 
analysis has demonstrated the separation of static and dynamic images with high efficiency 
compared with those of conventional DWT. As shown above, our MWT approach has versatile 
capability not only to information resource handling but also smart computing. 
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